Annihilating polynomials for quadratic forms
نویسنده
چکیده
This is a short survey of the main known results concerning annihilating polynomials for the Witt ring of quadratic forms over a field. 1991 A.M.S. Subject Classification : 11E81, 12F10, 19A22
منابع مشابه
Exterior Powers of Symmetric Bilinear Forms
We study exterior powers of classes of symmetric bilinear forms in the WittGrothendieck ring of a field of characteristic not equal to 2, and derive their basic properties. The exterior powers are used to obtain annihilating polynomials for quadratic forms in the Witt ring. 1991 AMS Subject Classification: 11E04, 11E81
متن کاملAnnihilating Polynomials for Quadratic Forms and Stirling Numbers of the Second Kind
We present a set of generators of the full annihilator ideal for the Witt ring of an arbitrary field of characteristic unequal to two satisfying a non-vanishing condition on the powers of the fundamental ideal in the torsion part of the Witt ring. This settles a conjecture of Ongenae and Van Geel. This result could only be proved by first obtaining a new lower bound on the 2-adic valuation of S...
متن کاملFast Algorithm for Calculating the Minimal Annihilating Polynomials of Matrices via Pseudo Annihilating Polynomials
We propose a efficient method to calculate “the minimal annihilating polynomials” for all the unit vectors, of square matrix over the integers or the rational numbers. The minimal annihilating polynomials are useful for improvement of efficiency in wide variety of algorithms in exact linear algebra. We propose a efficient algorithm for calculating the minimal annihilating polynomials for all th...
متن کاملQuadratic decomposition of Laguerre polynomials via lowering operators
A Laguerre polynomial sequence of parameter ε/2 was previously characterized in a recent work [Ana F. Loureiro and P. Maroni (2008) [28]] as an orthogonal Fε-Appell sequence, where Fε represents a lowering (or annihilating) operator depending on the complex parameter ε ≠ −2n for any integer n ⩾ 0. Here, we proceed to the quadratic decomposition of anFε-Appell sequence, and we conclude that the ...
متن کاملFiniteness results for regular ternary quadratic polynomials
In 1924, Helmut Hasse established a local-to-global principle for representations of rational quadratic forms. Unfortunately, an analogous local-to-global principle does not hold for representations over the integers. A quadratic polynomial is called regular if such a principle exists; that is, if it represents all the integers which are represented locally by the polynomial itself over Zp for ...
متن کامل